平成29年度

大学院文学研究科博士課程前期２年の課程入学試験

（秋期・一般選抜）問題

外国語 英語 B

試験開始の合図があるまで、この問題冊子を開いてはいけない。
Child-rearing trends might seem to blow with the wind, but most adults would agree that preschool children who have learned to talk shouldn’t lie. (A) But learning to lie, it turns out, is an important part of learning in general—and something to consider apart from fibbing’s ethical implications.

The ability to bend the truth is a developmental milestone, much like walking and talking. Research led by Kang Lee, a psychology professor at the University of Toronto, shows that lying begins early in precocious children. Among verbal 2-year-olds, 30% try to pull the wool over their parents’ eyes at some point. At age 3, 50% regularly try it. Fibbing is common among 80% of 4-year-olds and is seen in nearly all healthy 5- to 7-year-olds.

In other words, lying is nothing unusual in small children. What’s more, younger children who tell tales have a cognitive advantage over the truth-tellers, Dr. Lee said. “Lying requires two ingredients. Children need to understand what’s in someone else’s mind—to know what they know and what they don’t know. We call this ability (B) theory of mind. The children who are better at theory of mind are also better at lying.”

The second requirement, according to Dr. Lee, is executive function—the power to plan ahead and curb unwanted actions. “The 30% of the under-3s who can lie have higher executive function abilities,” he said, “specifically the ability to inhibit the urge to tell the truth and to switch to lying.”

Such cognitive sophistication means that these early liars will be more successful in school and in their dealings with other kids on the playground, he added.

Though Dr. Lee had known for decades that children who excel at theory-of-mind tasks are better liars, (C) he didn’t know which came first. Does lying make children better at guessing what other people are thinking? After all, trying half-truths on for size would elicit feedback from adults that would reveal something about their mental states. Or is it that if you teach people to imagine what’s going on in others’ minds, they then become better fabulizers? He tested that notion in an experiment that he published in the journal Psychological Science last November.

Theory-of-mind training has become a popular tool for helping children on the autistic spectrum as well as those with behavioral problems. (D) The training walks children through situations that help them to discover that other people could have knowledge or beliefs different from their own. In Dr. Lee’s lab the children are also read stories rich in information about people’s mental states. “So we asked, what are the side effects? Can we induce lying by training theory of mind?” Dr. Lee said.

He and a team of researchers from Canada, the U.S. and China divided a group of 58 preschoolers from a city in mainland China into two groups after testing them for such things as intelligence, lying ability and executive function. Half of the children received six sessions of theory-of-mind training and the other half received an equal number of sessions devoted to teaching number and spatial problem-solving skills.
After six sessions over eight weeks, the researchers found that the children in the theory-of-mind group had not only become better liars but also were significantly better at lies than the control-group children were. The effects lasted a month. Dr. Lee intends to follow up to see if these results persist.

(E) “The first occasion of your child telling a lie is not an occasion to be alarmed but an occasion for celebration. It’s a teachable moment,” he told me, “a time to discuss what is a lie, what is the truth and what are the implications for other people.”

[From the article by Susan Pinker, Wall Street Journal, Jan. 13, 2016.]

【注】fibbing: うそをつくこと pull the wool over ~’s eyes: ～をだます executive function: 実行機能 autistic spectrum: 自閉症スペクトラム（自閉症、アスペルガー症候群等の様々な神経発達症の分類）

問1 下線部 (A) を日本語に訳しなさい。

問2 下線部 (B) の theory of mind とはどのようなものを本文に即して述べなさい。

問3 下線部 (C) の具体的内容を本文に即して述べなさい。

問4 下線部 (D) を日本語に訳しなさい。

問5 下線部 (E) を日本語に訳しなさい。
Today, the National Museum of Natural History houses more than 126 million specimens, artifacts, field notes, and photographs. Each year the collection swells by about 750,000 items. How did the Museum end up with such a staggering number of objects?

The National Collections began in 1846 with the formation of the Smithsonian Institution, which inherited boatloads and trainloads of artifacts and specimens collected by exploring expeditions of the 1830s. Thousands of these specimens and cultural objects became the nucleus of this Museum’s collections. The National Herbarium, for example, includes nearly 50,000 plant specimens that were collected during the U.S. Exploring Expedition under the command of Lt. Charles Wilkes in 1838-42.

The fossil collection got its start during the 1880s, when the Museum sponsored research trips throughout the West. Some of the Museum’s first dinosaur specimens were found in Wyoming rock formations and then transported by donkey and train back to Washington.

(A) The Museum’s world-renowned Burgess Shale Collection consists of 65,000 fossils that preserve amazingly fine details of animal life on Earth about 500 million years ago. The collection grew out of excavations by Charles D. Walcott, the fourth secretary of the Smithsonian, in western Canada during the early twentieth century.

Gifts from individuals have strengthened many parts of the collection. The Terry Anatomical Collection, received from Washington University’s medical school, is named for anatomy professor Robert J. Terry, who began the collection in the early 1900s. Its 1,728 human skeletons have proven invaluable to anthropologists studying the effects of different diseases on bone.

The Nelson Collection is the world’s largest collection of Eskimo artifacts. During the 1880s, Army Signal Corps officer Edward W. Nelson was sent on a daring four-year-long expedition to Alaska, where he collected about 10,000 cultural objects.

The Mineral Science Collection has benefited from decades of generous contributions—including the 1958 donation of the Hope Diamond by Harry Winston and 16,000 mineral specimens from Washington A. Roebling, chief engineer of the Brooklyn Bridge.

The Museum’s invaluable collection of natural history specimens and cultural artifacts is a library of life. (B) Biologists study and compare specimens to understand how species are related and how they evolved. Anthropologists examine human artifacts to document cultural continuity and change.

The anthropology collections are also an important part of the heritage of Native Americans and other cultural groups, who exchange information with Museum staff when they visit the collections. (C) The artifacts in the collections can be a source of information and inspiration for communities that are reviving their cultural practices and artistic traditions.

Over the years, the collections have had (D) some very specialized and sometimes surprising applications. Since the 1920s, Museum anthropologists have helped Federal Bureau of Investigation researchers identify human remains. The Museum’s human skeletal collection enables physical anthropologists to assist in the identification of victims of crimes, natural disasters, and wars.

Beginning in the 1960s, military and commercial airlines have depended on Museum researchers and collections to identify the birds that collide with planes. Museum scientists take bits of beaks, bones, and feathers recovered from planes and match them to bird specimens in the collection. Once the birds are identified, airport personnel and airplane designers can take action to prevent future collisions.

Both military and health organizations make use of the Museum’s collection of 2 million mosquito specimens to identify disease-bearing mosquitoes. The collection—the largest in the world—was instrumental in the identification of the thirty different mosquito species that carry the West Nile virus.
(E)In these and many other ways, the Museum’s collections play an important role in understanding and caring for our world. Preserving the past will benefit future generations in ways we may not imagine today.

[From Official Guide to the Smithsonian Natural History, Revised Edition.]


問1 下線部 (A) を日本語に訳しなさい。

問2 下線部 (B) を日本語に訳しなさい。

問3 下線部 (C) を日本語に訳しなさい。

問4 下線部 (D) の一つの具体例を本文に即して述べなさい。

問5 下線部 (E) を日本語に訳しなさい。
Instead of answering Question [Ⅱ], only foreign students can choose to write an essay in English on "cross-cultural communication". Your essay should be more than 200 words in length.